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I. INTRODUCTION 
Training, evaluating, and deploying AI agents 
directly into the real world is most often prohibited 
by severe time, cost, availability, and safety 
constraints. Modelling and Simulation are therefore 
instrumental for the design of AI agents with 
interesting behavioural characteristics, within the 
realm of Machine & Reinforcement Learning. We 
test the efficacy of our approaches against a 
specific and still practically unsolved manipulation 
problem, that of robotic mushroom harvesting with 
a soft robotic gripper. We start with the design of 
a simulation environment for this specific 
manipulation task and we proceed with an 
exploration of sim2real techniques for our real-
world setup. We propose a novel control pipeline 
that encapsulates the simulation, not only as a 
training platform but also as a live, in-situ, 
abstraction layer. 

II. DESIGN/METHODOLOGY/APPROACH 
With the design of the simulation framework for 
mushroom harvesting immediately two well-known 
problems arise. Firstly, the complexity and 
intricacies of the contact dynamics are usually not 
captured by the commonly utilized rigid multibody 
physics engines for robotics, rendering a robust 
sim2real transfer unlikely. Secondly, capturing the 
behaviour of materials with deformable structures 
and respective failure modes is a hard problem that 
is usually framed within analytical Finite Element 
Analysis (FEM) approaches, which is impractical for 
our current project objectives. 

We choose to design our simulation environment 
around the PyPullet physics engine, which is 
commonly used in robotics and reinforcement 
learning for rigid-multi-body simulations. This 
system architecture allows us to capture the 
dominant dynamics of our scene, allows for fast 
development cycles and lastly it poses an 
interesting research question, on whether such a 
degree of system approximation and abstraction 
suffices for robust sim2real transfer, given the 
application of explicit sim2real techniques. 

 
Figure 1 Real soft gripper prototype in the 
mushroom crop and the equivalent simulation 
environment. 

We capture our scene's dominant dynamics 
through continuum mechanics formulations and 
multiple link-joint sequences for the soft robotic 
gripper, inspired by the Soft Motion Toolkit 
(SoMo)[1] For the mushroom-root deformation 
and material failure mode we combine a spherical 
with a prismatic joint controlled by a simple PD 
controller for emulating the linear elastic 
regions(see Figure 1). The proportional gains for 
all 4 DOFs of the mushroom-root system are 

 

computed based on the properties of a liner 
isotropic material. The failure mode occurs based 
on the Von-Mises stress criterion. 

For fine-tuning the simulation and control 
parameters we conduct force-position experiments 
on real-world mushrooms, for determining the 
material elastic modulus terms and we also 
conduct step-response experiments on the finger 
of the real soft-gripper for system identification. 

 
Figure 2 The simulation environment with the 
Panda Gripper and a randomized scene rendering. 

The scene objects textures and colours as well as 
the scene lighting can arbitrarily change (see 
Figure 2) for avoiding over-fitting during training, 
thus increasing generalizing properties and 
ultimately making a sim2real transfer more likely. 

III. FINDINGS/RESULTS 
Based on real-world measurements of mushroom 
stiffness characteristics (see Figure 3) and the soft-
gripper step responses we can conclude that our 
simulation framework is able to capture some 
dominant & critical dynamics of the mushroom-
root system.  

 

 
Figure 3 Mushroom root stiffness identification 
and replication in the simulation environment for 
the tensile, rotational and bending loads on the 
mushroom cap. 

A very early naive sim2real transfer, without the 
use of any explicit technique, has been attempted 
without success, always leading to instabilities and 
abrupt motions of the real-world robot.  

IV. DISCUSSION/CONCLUSIONS 
We design a simulation framework for training and 
testing as a way to circumvent an analytical rule-
based planning & control design approach, which 
would be probably unable to optimally handle each 

and every corner case for such a complex task 
(also known as the long-tail distribution problem). 
Designing a high-fidelity simulation environment 
for a real-world task, can also potentially be an 
equally or more complex & prohibitively expensive 
problem. A viable way to proceed is with a careful 
selection of the system's critical dominant 
dynamics and approximation hypotheses together 
with a set of explicit sim2real techniques. 

It is important to note that the design of even a 
system with simplified-approximate dynamics is 
not trivial and requires a significant investment on 
development and some form of system 
identification processes as well. This is a significant 
bottleneck for the development and deployment of 
AI agents for real-world problems.  

Another key observation is that the current 
workflow utilizes the simulation framework only 
during the training phase. As the simulation 
framework can be a representation and an 
abstraction layer of the real-work environment, 
which is also intuitive for humans, it could  be 
utilized and be an integral part of the perception 
pipeline.  

V. FUTURE PLAN/DIRECTION 
Our work now focuses on refining and evaluation 
the domain randomization as a sim2real technique 
for this particular problem. For mitigating the 
problem of the discrepancy between the simulation 
rendering and the real-world video stream, we are 
evaluating domain adaptation techniques such as, 
feature mapping on the CNN embeddings and 
translation modules for homogenization of the CNN 
embeddings, regardless of a synthetic or real vision 
feed. 

Based on the key insights we focus our research 
efforts on automating the generation of an ad-hoc 
simulation environment on physics-enhanced 3D 
scene reconstruction methods. The existence of 
such a simulation layer would allow for plan 
execution and trajectories generation in agent's 
"imagination" which can also be examined and 
evaluated by a human supervisor. These generated 
trajectories, waypoints and task-specific 
embeddings can be then translated to real-world 
robot action. 

An intriguing possibility, which we are also 
examining, is the utilization of LLMs and 
Generative AI for performing this image-video-to-
simulation-environment mapping. 
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