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Abstract— This paper presents a robotic mushroom harvest-
ing solution, consisting of an actuated scanning vision system
integrated into a gantry robot. The system is capable of
performing segmentation and pose estimation of the mushrooms
on dutch shelves commonly used in growing farms worldwide.
The vision system employs an active stereo RGB-D camera able
to capture a 360◦ scene of the mushroom bed, providing a high
quality reconstruction of the mushroom caps. The YOLOv5
algorithm is used for the detection and size classification of the
mushrooms, while a two-step model-fitting method is developed
for the pose estimation task. The actuated carriage is compact,
designed for operation in real mushroom-growing farms and
intended to be used together with a soft gripper. The robot has
five actuated degrees of freedom (DoFs), three for the linear
motion on the shelves, and two DoFs for achieving the desired
orientation for the gripper. In a real harvesting scenario, the
robot sequentially scans the selected areas and accurately places
the gripper in the appropriate angle of attack utilising our pose
estimation method together with our visual servoing module
for minor adjustments. The results were promising on all trials
using 3D printed white button mushrooms on real soil.

I. INTRODUCTION

According to [1], the mushroom industry is facing difficulties
in maintaining profit margins due to the increasing cost of
raw materials, and the application of outdated and inefficient
cultivation methods. In such industries, automation is the
key towards reducing labour costs, boosting production and
improving working conditions [2]. Among the mushroom
industry, the white button mushroom (Agaricus bisporus) is
the most widely cultivated variety (15−36% of total market
share) [3]. These mushrooms have a delicate body that can
be easily damaged or blemished, leading to reduction in their
value. As a result, a robotic solution capable of efficiently
harvesting white button mushrooms, will bear tremendous
economic benefits in the sector [4]. Such a system should
be equipped with: (a) a vision system capable of scanning
mushroom beds, estimating the size as well as the pose of
the individual mushrooms and (b) a motion system capable
of positioning a gripper in the correct angle of attack, for
successful outrooting.

Several computer vision approaches for mushroom de-
tection and segmentation have been implemented so far.
The YOLOv5 [5] detection algorithm is used for real-time
tracking of mushrooms on a conveyort belt in [6] as well
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as for growth status inspection in [7]. Concerning Agaricus
bisporus mushrooms, a convolutional neural network (CNN)
is utilised for mushroom size estimation [8], while in [9]
a solution that detects overlapping mushrooms is proposed
which applies a Canny operator, a Harris corner detection
and the branch definition algorithm. Finally, [10] introduces
a vision pipeline, that performs detection and pose esti-
mation of mushrooms, using one RGB-D camera and ICP
[11] registration. All mentioned approaches have not been
integrated into an autonomous mushroom harvester, designed
for existing mushroom farms [12]. In addition, besides the
detection and localization tasks, the developed mushroom
picking systems so far [13], [14], [15], [16] do not focus on
the pose estimation of the mushrooms, which is an important
step for the correct and successful outrooting.

In this work, we present a complete mushroom picking
solution (Fig. 1a) consisting of: (a) an actuated stereo vi-
sion system for accurate mushroom detection, segmentation,
classification and pose estimation which is orders of magni-
tude cheaper compared to laser scanning solutions [17] (b)
an actuated gantry robot specifically designed for existing
mushroom farms [12], that is able to position a gripper in
the correct angle of attack to successfully outroot a selected
mushroom.

(a)

(b)

Fig. 1: (a) The robot placed on the dutch shelves and (b) the
robot’s CAD.



The rest of the paper is organised as follows: Firstly, the
Cartesian robot is presented followed by the mushroom de-
tection and pose estimation pipeline. Secondly, the harvesting
procedure is described as well as the software developed to
carry out the harvesting task. In turn, experimental results
validate the accuracy of the proposed method while in the
conclusion section the developed mechatronic solution is
summarised and future research direction is proposed.

II. CARTESIAN ROBOT OVERVIEW

The proposed robot design takes into account the 1.34m
wide dutch shelves commonly used in mushroom farms
worldwide that are usually stacked one on top of the other
[12]. Our robotic solution was designed to fit between two
consecutive shelves and move along consecutive shelving
bridges. As planned, a soft gripper will be integrated into
the robot [18] suitable for delicate mushroom harvesting.
Additionally, the robot is equipped with an actuated low-
cost vision system consisting of one camera that can rotate
and scan the mushroom bed, performing mushroom detection
and pose estimation tasks.

The actuation system consists of eight motors: two for the
motion along the X axis, two for the Z axis and one for the Y
axis (coordinate system presented in Fig. 1b & 2). One motor
is responsible for the rotational motion of the camera system
while two motors are used for the picking mechanism.
The robot moves along the X axis with the use of two
identical actuated pulley systems. The reason for having two
synchronised motors for the X axis motion is to avoid using
a transmission shaft which could possibly interfere with the
cameras field of view (FoV). Concerning the Z axis motion,
two identical mechanisms consisting of a drive pulley/driven
pulley system and a screw-nut mechanism are used, while
for the motion along the Y axis a timing belt tensed around
a single pulley is utilised. The Y axis motion is guided
by V-wheels moving along T-slot aluminium extrusions. All
mechanisms are presented in Fig. 1b.

A pair of 1254mm long, aluminium extrusions are used
as guides for the Y axis motion. These parts can easily be
replaced by bars of different lengths to change the width of
the robot and make it compatible with a set of dutch shelves
other than the common one, i.e. 1.34m. Currently, the robot
is 1386mm wide to fit in the standard shelving bridge.

A major design task was the creation of wheels that would
allow the robot to move across the dutch shelves without
losing track. The wheels are placed on the circular bump
of the structural element of the dutch shelves (Fig. 1b) and
enclose it with a pair of flanges to maintain the robot’s
motion on track. The mechanisms used for the X and Z axis
motion are placed between two aluminium sheets, which are
3mm thick, in a 2cm wide gap between them. The more
compact the assembly, the bigger the area of the mushroom
bed that can be utilized. The chassis of the robot consists
of aluminium sheets and extrusions leading to a total mass
of 25kg. The low mass of the robot, as well as the use of
polyurethane wheels and aluminium parts were deliberate
choices that lead to sufficient corrosion and wear resistance.

The vision system is attached under the unit that moves
along the Y axis (orange part in Fig. 1b). The camera’s
pitch angle is 60◦ (Fig. 2). This decision improved our initial
approach presented in [19], and produced better reconstruc-
tion results of the mushroom caps as the camera had better
view of the upper and the lateral side of the caps. During
scanning, the camera’s distance from the mushroom bed is
0.3m. These values were selected, taking into account the
camera’s specifications [20] for optimal performance. During
scanning, if the camera is close to one of the aluminium
sheets, it cannot complete a full rotation for the scanning
procedure. Therefore, the camera rotates 180◦, when these
areas (red in Fig. 2) are scanned. A vision system with two
cameras would be twice as fast but not able to scan these
areas (while rotating, one of the cameras would collide with
the aluminium sheets of the robot’s chassis).

Fig. 2: The robot’s scanning path and the rotational motion
of the vision system.

Concerning the gripper, two actuated DoFs are needed so
that all desired angles of attack can be reached. As a result,
two motors are responsible for the yaw and pitch rotational
motions of the picking mechanism. Given the coordinates
(xm, ym, zm) of the cap and the yaw and pitch angles of the
mushroom (Fig. 3), the (1-5) produce the desired position
and orientation of the gripper.

yawgripper = π + ϕ (1)

pitchgripper = π + θ (2)

zgripper = zm + L sin θ (3)

xgripper = xm + L cos θ cosϕ (4)

ygripper = ym + L cos θ sinϕ (5)

The ϕ and θ angles are the yaw and pitch angles of the

(a) (b)

Fig. 3: (a) Mushroom’s yaw and (b) pitch angle.



mushroom respectively while L is the distance between the
last joint of the picking mechanism and the palm of the
gripper (Fig. 3).

III. MUSHROOM DETECTION AND POSE ESTIMATION

A. Scanning and 3D Reconstruction

For the scanning procedure, the bed is initially divided
into slices of 30cm x 134cm while each slice is divided
into scanning sectors of 30cm x 30cm (Fig. 2). The robot
moves to the center of each sector and performs a scan
using the actuated vision system. Specifically, it captures
18 snapshots of the scene. Each snapshot consists of an
aligned pair of RGB and Depth Map images. Between each
snapshot, the camera system rotates 20◦ (Fig. 4). At the end
of the scanning of the sector, the position of the camera is
turned 340◦ relative to its starting position. Finally, the vision
system rotates back to the initial position, ready to scan the
next sector.

The RGB-D snapshots from the scans are converted to
point clouds that are stitched together. The successive point
clouds must have an overlapping area, so that the registration
algorithm (ICP) can tightly align them [21]. Our recon-
struction method iterates and stitches two consecutive point
clouds using the ICP Point-to-Plane algorithm. ICP needs
an estimation of the initial transformation between the point
clouds to perform a tight alignment, which can be calculated
using Global Registration algorithms. In our case, the initial
transformation between two successive point clouds is known
and its 20◦ respective to the center of rotation of the vision
system. The result is a colorized point cloud with a complete
3D reconstruction of the mushrooms in that sector.

Fig. 4: The scanning, 3D reconstruction and detection pro-
cedure of the actuated vision system.

B. Detection, Localisation and Size Classification

A mushroom detection and localisation procedure is devel-
oped, based on YOLOv5m [5] algorithm, to retrieve the
position of the mushrooms and classify them in four size
categories. The training dataset for YOLOv5m consists of
500 overhead images of 3D printed mushrooms, placed on
real soil. The training procedure followed is described in
detail in [22].

The source image for the YOLOv5 detection method
must have an overhead position perspective for the detec-
tion results to be accurate (mushroom cap size estimation,
etc.). However, adding one camera to the vision system
was deemed redundant because the required overhead RGB

image can be extracted from the colourised 3D reconstruction
by using a virtual camera in the Open3D [23] environment.
The virtual camera is configured to have the same intrinsic
parameters as the scanning camera. Its position in the virtual
environment is on the center of rotation of the vision system
and its orientation is perpendicular to the reconstructed
scene. The overhead RGB image from the virtual camera
is used as the source for the YOLOv5m detection model.
The result is a bounding box for each detected mushroom.
The coordinates of the center of the bounding box (xp, yp),
are used to extract the (xm, ym, zm) coordinates of the
detected mushroom from the reconstructed point cloud in
the corresponding pixels. To avoid cases where the point
cloud has no information in this point, e.g.: due to noise
associated with the RGB-D camera, we extract a 3x3 array of
pixels around (xp, yp). In turn, we retrieve the corresponding
point cloud values and calculate the average value of the
Z coordinate. The resulting 3D coordinates of the target
mushroom (xm, ym, zm) are transformed to the gripper’s
coordinates using (3-5).

During the harvesting procedure, the mushrooms have to
be grouped in size categories, e.g. 40mm, 50mm, 60mm and
90mm in diameter. Our approach performs classification to
these four categories while this information can later be used
in the harvesting plan.

C. Orientation Estimation

After extracting the 3D location of the target mushroom,
our method estimates its orientation using a two-step model-
fitting approach. A dataset of mushroom models has been
created offline by scanning 3D-printed mushrooms tilted in
predefined orientations around the Z and X-axis (see Fig. 5).
This results in 33 scans, i.e.: 8 scans from 0◦ to 360◦ with
a 45◦ step around the Z-axis multiplied by 4 for the X-axis
rotations (10◦ to 40◦ with a step of 10◦) plus one model
that is not tilted. The normal vector of the mushroom cap of
each model is stored, deriving from its orientation. The point
clouds of the models are converted and stored as K-D Trees,
structures optimised for nearest neighbour search [24].

During runtime, the point cloud of each detected mush-
room is segmented using the predicted bounding box. Next,
the normal vector of the sample mushroom point cloud has to
be computed. Based on experiments, it is safely concluded
that the small curvature of the top part of the mushroom
cap can be represented by a plane surface. By employing
the RANSAC algorithm we segment the plane with the
largest support (e.g. ax + by + cz + d = 0) on the sample
mushroom point cloud and compute its perpendicular vector
s⃗ = (a, b, c).

Initially, the angle difference between the normal vector
of the sample and the normal vector of each model, is
calculated. Specifically, the angle θi between the normal
vector of the sample s⃗ and the stored normal vector of the
ith model m⃗i is given by (6).

θi = ⟨s⃗, m⃗i⟩ = arccos

(
s⃗ · m⃗i

∥s⃗∥∥m⃗i∥

)
(6)



Fig. 5: Pose estimation pipeline.

If the difference θi exceeds a predefined threshold, those
models are excluded from the next model-fitting comparison.
This leads to an initial orientation estimation of the sample
mushroom and avoids unnecessary comparisons with every
model in the dataset.

Secondly, we initiate a nearest neighbour search between
every point ps in the sample point cloud and the remaining
models in the dataset. The point clouds of the models
have been converted to K-D Trees to achieve fast nearest
neighbour search. The search is hybrid, meaning that the
criteria are: 1) the distance within a radius from the query
point ps and 2) the number of neighbours within this radius.
Specifically, the search algorithm is developed to check if
for every ps in the sample there is at least one point from
the model point cloud, within a specific radius of 2mm.

Finally, a fitness score is calculated between 0.0 and 1.0,
indicating how ”tight” is the overlap between a model and
the sample (Fig. 6). The fitness is calculated using (7) where
the no of correspondences indicates the number of points
in the model that satisfy the search criteria.

fitness =
no of correspondences

no of points in sample
(7)

(a) (b)

Fig. 6: (a) Bad fit and (b) Good fit between the sample
(green) and a model (red).

The candidate model with the highest fitness score corre-
sponds to the orientation of the sample mushroom. The pose
estimation pipeline is summarised in Fig. 5.

D. Visual Servoing

In most cases, the centre of the bounding box from the
detection phase does not equal the centre of the correspond-
ing mushroom cap, due to the mushroom’s various possible
orientations and the overhead perspective of the source RGB
image. Therefore, after the initial approach to the mushroom
with inverse kinematics, a visual servoing procedure takes
place, aiding the approach to the mushroom’s centre with
higher precision, using a micro-camera that is intended to
be embedded in the palm of the soft gripper.

When the gripper is positioned close to the target mush-
room, the YOLOv5m detection module starts receiving the
camera’s feedback in real-time and calculates the bounding
box of the target mushroom. The end effector’s yaw and
pitch angles are given by the orientation estimation procedure
and (1-2). The robot is controlled to move on the plane that
is tangential to the top of the mushroom model with the
highest fitness score (Fig. 7a) and to perform visual servoing
so that the center of the bounding box (xc, yc) and the
centre of the camera frame Oc coincide (Fig. 7b). Utilising
the in-hand camera and the trained YOLOv5m mushroom
detector, the pixel error (epxx, epxy) between the centre of
the bounding box of the target mushroom and the centre
of the camera frame, is calculated. Two P controllers with
gains Kpx, Kpy are employed to move the robot on the Oc

plane and minimize (epxx, epxy). The motion on the visual
servoing plane (Fig. 7a) is achieved by translating the pixel
error to displacement in X, Y and Z axes, using (8-10).

∆z = Kpxepxx cos θ (8)

∆x = −Kpxepxx sin θ cosϕ−Kpyepyy sinϕ (9)

∆y = Kpxepxx sin θ sinϕ−Kpyepyy cosϕ (10)

(a) (b)

Fig. 7: (a) The visual servoing plane and (b) the visual
servoing progress as the controller aligns the centre of the
bounding box of the detected mushroom (green) with the
centre of the camera frame (red).

IV. HARVESTING PROCEDURE

The developed robot is capable of performing the harvesting
procedure presented in Fig. 8, consisting of four phases:
Initialisation, Scanning, Detection and Harvesting. During
the Initialisation phase the robot performs homing. In turn,
the mushroom bed is divided to slices and scanning sectors
(Fig. 2). During the Scanning phase the robot moves to the
first slice and iteratively scans its sectors until the whole
area of the slice is covered. For the Detection phase, the
reconstructed images of the previous step are used to estimate



the pose and mushroom size group in the slice. This results
in a dataset of mushroom targets, containing the following
information for each one: 1) 3D Position, 2) Orientation, 3)
Size group. The mushrooms are sorted according to their
Z coordinate. During the Harvesting phase, the harvesting
plan combines the information of mushroom height and size
in order to pick first the mushrooms that are bigger and in the
upper layer, making the outrooting of the mushrooms in the
lower layers easier. The proposed scanning and harvesting
path of a mushroom bed are shown in Fig. 2.

Fig. 8: The proposed harvesting procedure.

V. SOFTWARE ARCHITECTURE

The computer vision software modules and the carriage
control software modules are hosted on a PC running Ubuntu
20.04 LTS (Focal Fossa) and ROS Noetic [25]. The recon-
struction and pose estimation procedures were developed
using Open3D [23] and ROS.

Separate ROS nodes have been developed for the scanning
and reconstruction procedures. A /camera node is used for
controlling the RealSense D435i scanning camera, con-
figured to produce images with a resolution of 848x480
at 30FPS. The /scanning node rotates the vision system
and receives the RGB-D snapshots from the camera. The
/reconstruction node is responsible for: (a) receiving the
RGB-D snapshots, (b) converting them to point clouds and
(c) performing the point cloud stitching. The point cloud
stitching procedure runs in parallel with the scanning, and it
takes ∼19secs for the 3D reconstruction of a whole sector.
The /detection node receives the reconstructed scene, per-
forms mushroom detection and produces the 3D localisation
results. Finally, the /orientation estimation node, receives the
reconstructed scene and the bounding boxes of the detected
mushrooms and estimates their orientation.

Regarding the software for the robot’s motion, low-level
/position control and /velocity control nodes have been de-
veloped that use the Dynamixel C++ API to communicate
with the motors. The developed nodes are adjusted for ve-
locity control along the X,Y and Z axes, while the actuators
of the gripper and the vision system are configured for
position control. Additionally, a /carriage controller node
is developed, which encapsulates a ROS action server that

receives the pose of a mushroom target. By utilising the
inverse kinematics (1-5) and the in-hand camera feedback
the end effector is aligned with the centre of the target
mushroom.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

All the experiments were conducted using a mushroom
bridge provided by [12] that is identical to those used in the
mushroom growing farms. An end effector was 3D printed
and a micro-camera was attached to it. The camera was
identical to the one destined for in-hand use in the gripper
proposed in [18], (Fig. 9). The total length of the end-effector
(3D printed part and camera) equals the length L of the
soft gripper. The camera provides visual feedback during the
visual servoing procedure to control the end effector towards
the correct position for outrooting.

Fig. 9: The experimental setup.

B. Orientation Estimation Experiments

Experiments for the vision system were conducted, to eval-
uate the proposed orientation estimation method. The mush-
rooms were placed on a 3D printed test base (black base in
Fig. 9) and the developed pipeline calculated their orienta-
tion. The estimation was compared to the actual orientation
of the sample mushroom which could be calculated manually
by the user. The results for 20 trials are presented in Table
I. The error was ∼5◦ around the X-axis and the execution
time for the orientation estimation of a sample mushroom
was ∼0.1s.

Samples Error
Avg

Error
Std Dev

Execution
Time
Avg

No of
Compared

Models Avg

20 5.86◦ 2.35◦ 0.1176s 8.7

TABLE I: The average error, execution time and number of
comparisons of our orientation estimation method.

C. Visual Servoing Experiments

The accuracy of the visual servoing module was experimen-
tally evaluated. Initially, the pose of a sample mushroom
in Fig. 9 was estimated using the pipeline presented in
Fig. 5 and the end-effector approached it using (1 - 5). In
turn, the visual servoing started in order to align the in-
hand micro-camera and the target mushroom. The camera
frames (397x286) are passed to the YOLOv5m detection



model that produced the bounding box of the mushroom at
30FPS. The distance in pixels between (xc, yc) and Oc (Fig.
7b), on the visual servoing plane (Fig. 7a), was calculated
online. The procedure stopped when the distance in pixels
between (xc, yc) and Oc was equal or bellow 11px taking
into account the adaptability of the soft gripper to objects.
Fig. 10, presents the visual servoing results on the sample
mushroom. The desired and actual position, of the linear
motions of the robot in global coordinates OR is shown in
Fig. 10 (column 1) while in Fig. 10 (column 2) is depicted
the pixel error on the visual servoing plane which reaches
the applied threshold.

Fig. 10: The desired and actual position of the robot (left)
and the errors in pixels (right), during the visual servoing
process. The threshold is reached at t = 1, 35s (green line).

VII. CONCLUSIONS

In this work, a low-cost autonomous mushroom harvesting
system is presented. The robot is designed to work with
a soft gripper, suitable for the delicate harvesting of white
button mushrooms. The developed system is compact so that
the chassis does not interfere with the crop, can be easily
integrated in existing mushroom growing farms and has been
tested in common, 1.34m wide, dutch shelves. Concerning
the low-cost vision system, accurate detection and pose
estimation of the mushrooms is achieved by employing one
active stereo RGB-D camera that can rotate 360◦. The results
were promising, the error was ∼5◦ which is easily handled
by a soft gripper taking into account its robust adaptability to
objects. Lastly, utilizing visual servoing and an in-hand micro
camera, the gripper is guided to the optimal angle of attack.
As soon as the soft gripper is ready for experiments, the
robot’s harvesting performance on real mushrooms (mush-
rooms picked per minute) will be evaluated.
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